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q - GENERALIZED CENTRAL LIMIT THEOREM:

S. Umarov, C.T. and S. Steinberg, Milan J Math 76, 307 (2008)

g-Fourier transform:
( ix ( ix x4
F L) = [e @, f(x)dx= [ ey r(x) dx

(g=1)

(nonlinear!)

For g<1 see K.P. Nelson and S. Umarov, Physica A 389, 2157 (2010)
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S.M.D. Queiros and C. T., AIP Proc 978, 21 (2007)

K(q) |
0.8 |

0.6 |

0.4 |

(B) " g {géz_(qu)} =K(q)

0.2 |

Heisenberg-like uncertainty

Consequently, for fixed g < 2,

when >0 increases (decreases), §, >0 decreases (increases)



q - GENERALIZED CENTRAL LIMIT THEOREM:
S. Umarov, C.T. and S. Steinberg, Milan J Math 76, 307 (2008)

g-independence:

Two random variables X [with density f,(x) | and Y [with density f,())]

having zero g —mean values are said q -independent if
F[X+Y1(E) =F,[XI(&) ®,,, FIYIE) .
3—q
ie., if
e, 1o =| [ e @, £, 8upey| [ D e, )],
with

fer@ =] _dx[ dy h(x,y) 8(x+y—2)=] dh(x,z=x)= | _dy h(z—y,)
where h(x, y) is the joint density.

independence if q=1, ie., h(x,y)=f,(x)f, (V)

q - independence means
global correlation if q#1, ie, h(x,y)# f,(x)f, ()
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CENTRAL LIMIT THEOREM

N _scaled attractor F(x) when summing N — oo q -independent identical random variables

with symmetric distribution f (X) with Op = Idx X[ f(x)]° /de [ £(x)]° (Q 2qg-1,q, = ;+q j

qg=1 [independent] qg#1(ie, O=2qg-1 #1) [globally correlated |
F(x)=G,(x) =G, (1+a,) (x) with same o, of f(x)
o < F(x) = Gaussian G(x), G(x) if | x|<<x.(q,2)
oo - G, (x) ~
° with same &, of 1) O -0, 15PN 5o
(ax=2) L
Classic CLT with lim, ., x(¢,2) = e°
S. Umarov, C. T. and S. Steinberg, Milan J Math 76, 307 (2008)
F(x) = Levy distribution L(x) F(x)=L,, ., with same |x |— e asymptotic behavior
with same | x| — oo behavior . 2(1_5()1__0;()3 ~4)
G2(1—q)—a(1+q) a(x) - Cq,a/ | x|
) 2(1-g)~(3-q)
O-Q — G(x) (intermediate regime)
if | xk<x (l,x -
(O<a<2)La(x)~4 f| | c( ) Lq,a <

with lim

a— 2 c

f(x)~Cy /| x[H
if | x> x,(1,0)
x.(l,a) =00

Levy-Gnedenko CLT

20{q—0(+3 q’a
o+1

(distant regime)

"
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The large deviation approach to statistical mechanics
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ARTICLE INFO ABSTRACT
Article history: The theory of large deviations is concerned with the exponential decay of probabilities
Accepted 29 May 2009 of large fluctuations in random systems. These probabilities are important in many

Available online 6 June 2009

‘ : fields of study, including statistics, finance, and engineering, as they often yield valuable
editor: 1. Procaccia

information about the large fluctuations of a random system around its most probable
state or trajectory. In the context of equilibrium statistical mechanics, the theory of large

g’;gsd ” dgvia{ions provides ex poneptial-orgier es_rimares of prob‘_abilities that refine apd generalize
65.40.Gr Einstein’s theory of fluctuations. This review explores this and other connections between
02.50.-r large deviation theory and statistical mechanics, in an effort to show that the mathematical
05.40.-a language of statistical mechaniss is the language of large deviation theory. The first

part of the review presents the basics of large deviation theory, and works out many
of its classical applications related to sums of random variables and Markov processes.
The second part goes through many problems and results of statistical mechanics, and
shows how these can be formulated and derived within the context of large deviation
theory. The problems and results treated cover a wide range of physical systems, including
equilibrium many-particle systems, noise-perturbed dynamics, nonequilibrium systems,
as well as multifractals, disordered systems, and chaotic systems. This review also covers
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ABSTRACT

The computational study commented by Touchette opens the door to a desirable generalization of
standard large deviation theory for special, though ubiquitous, correlations. We focus on three inter-
related aspects: (i) numerical results strongly suggest that the standard exponential probability law is
asymptotically replaced by a power-law dominant term; (ii) a subdominant term appears to reinforce
the thermodynamically extensive entropic nature of g-generalized rate function; (iii) the correlations we
discussed, correspond to Q -Gaussian distributions, differing from Lévy's, except in the case of Cauchy-
Lorentz distributions. Touchette has agreeably discussed point (i), but, unfortunately, points (ii) and (iii)
escaped to his analysis. Claiming the absence of connection with g-exponentials is unjustified.

© 2012 Elsevier B.V. All rights reserved.
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The first man to use a
truly statistical approach was Boltzmann [1877] and
at that point kinetic theory changed into statistical
mechanics even though it was another twenty odd years
before Gibbs coined the expression.

One might argue that the proof of the pudding is in
the eating, and that the fact that statistical mechanics
has been able to predict accurately and successfully the
behavior of physical systems under equilibrium condi-
tions—and even under certain circumstances in non-
equilibrium conditions*—should be a sufficient justifica-
tion for the methods used.




www.nature.com/scientificreports

SCIENTIFIC REPQ&RTS

' The standard map: From

Boltzmann-Gibbs statistics to

Tsallis statistics

Received: 10 December 2015 Ugur Tirnakli** & Ernesto P. Borges?3*

Accepted: 09 March 2016
Published: 23 March 2016 . AS well known, Boltzmann-Gibbs statistics is the correct way of thermostatistically approaching ergodic
. systems. On the other hand, nontrivial ergodicity breakdown and strong correlations typically drag

. the system into out-of-equilibrium states where Boltzmann-Gibbs statistics fails. For a wide class of

- such systems, it has been shown in recent years that the correct approach is to use Tsallis statistics

. instead. Here we show how the dynamics of the paradigmatic conservative (area-preserving) stan-

. dard map exhibits, in an exceptionally clear manner, the crossing from one statistics to the other. Our

- results unambiguously illustrate the domains of validity of both Boltzmann-Gibbs and Tsallis statistical

. distributions. Since various important physical systems from particle confinement in magnetic traps

. to autoionization of molecular Rydberg states, through particle dynamics in accelerators and comet

- dynamics, can be reduced to the standard map, our results are expected to enlighten and enable an

. improved interpretation of diverse experimental and observational results.



STANDARD MAP (Chirikov 1969)

p.,, = p;— Ksinx, (mod 2r)

X, =X + P (mod 27)
(1=0,1,2,...)

(area-preserving)

Particle confinement in magnetic traps,
particle dynamics in accelerators,
comet dynamics,

ionization of Rydberg atoms,

electron magneto-transport



(9102) ¥9¢€Z ‘9 spoday oyualog / ainjeN
sobiog pue Ipjeudi|

K=0.6

K=0.2




0.08

0.6

0.2

(9102) ¥¥9€Z ‘9 sHoday ounuslos / ainjeN
sobiog pue Ipjeudi|

AoundeA| aoundeL]

Ua) <t o ol —
S Qo S <o Q<
o o o o (aw]

0.07
0.06

R v ¥ o ST

O
w
<
n =
o
(-} -
p—(
I
e &
O o) -t o ol —_ O
QU
aoundeA] aoundeA|
Wy wy Wy Wy w v Ue)
] =3 3 8 ¥ £ . 0 o d g = = Q
— — = . © © © ©o © ©o o o o o
N N N 0 N




— 1'®
- 0
o’k — — Gaussian (q=1, p=3.14) o
] 10"
o' M=10" -
8 2 - i ~ 102
- S
~ 1 A
0°E — 54~
' K=10 3 =
o 1 2>
e,
10°F 3
10°F =
| | 3
3 2 I I 2 3

' 03s[P(Y) / P(O)]

.q=

In

Tirnakli and Borges
Nature / Scientific Reports 6, 23644 (2016)

22

3 — T1=2"
: I ——— g=1935,B =21
1 e
i :
1 7
i M=4x10 =
ER

i\

15(
0
K=0.2
20000 — -
(b) .
1 1 1 o)
40000 - _lo 250 500 750 1000
A o
s’ ’
il
60000 (— ® N et e
A,
oRSe,
- o op .l _
(a) (©)
L l 1 l L l al 1 L L
Raae™ 1000 2000 3000 0 25 50 75 100

ly P(0)]°



Standard Map

I I !

¢ 30x106 random ini. conds.
—— g=1.935

T TTTT

[l
(-
——

T IlIIIIl

—
| 1 IIIIII|

= e
_———

T IIIIII|
| | IIIIII|

T IIIIIII
[ IIIIIII

T IIIIIII

I IIIIII|
] IIIIII|

I ! | ! |
-3000 -2000 -1000 0 1000 2000 3000

U. Tirnakli and C. Antonopoulos (2017)



P(y) /' P0)

[ T T lIII I IIlIIII| | IIIlIlI| I IIIIIII| | llIIIIIl I IIIIIIII I IIIIIIll

iM S 11 |

22
T=2
(a) — — q=1.935, B_=20, B=0.003

0=0.9988

M=10
K=0.6

| lIIIIIIl | IIIlIIlI | IIlIlllI | llllllll | Illlllll

-200 -150 -100 -50 0 50 100 150 200

_£X_
P(0)

= a exp,(—B,[yP(0)]*) + (1 — @) exp(-BlyP(0)]*)



fm e et e s mr et — e e e —— = s g e me s ——

EER T I

The standard map: From Boltzmann-Gibbs statistics to Tsallis
statistics

This Altmetric score means that the article is:
e in the 94t" percentile (ranked 15,686t") of the 278,650 tracked articles of a

similar age in all journals
e inthe 90th percentile (ranked 263") of the 2,903 tracked articles of a similar

age in Scientific Reports

Page views (2,408)

View as: Cumulative Line Table

2,000
1,500
1,000

500

April June August October December February April June



OVERDAMPED MOTION OF REPULSIVELY INTERACTING
VORTICES IN TYPE Il SUPERCONDUCTORS

ek endi
PRL 105, 260601 (2010) PHYSICAL REVIEW LETTERS 31 DECEMBER 2010

Thermostatistics of Overdamped Motion of Interacting Particles

J.S. Andrade, Jr.,'? G.F.T. da Silva,' A. A. Moreira,' F.D. Nobre,>” and E. M. E. Curado®>
lDepartamemo de Fisica, Universidade Federal do Ceard, 60451-970 Fortaleza, Ceard, Brazil
2Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ, Brazil

3National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ, Brazil
(Received 8 August 2010; published 22 December 2010)

We show through a nonlinear Fokker-Planck formalism, and confirm by molecular dynamics simula-
tions, that the overdamped motion of interacting particles at T = 0, where T is the temperature of a
thermal bath connected to the system, can be directly associated with Tsallis thermostatistics. For
sufficiently high values of 7, the distribution of particles becomes Gaussian, so that the classical
Boltzmann-Gibbs behavior is recovered. For intermediate temperatures of the thermal bath, the system
displays a mixed behavior that follows a novel type of thermostatistics, where the entropy is given by a
linear combination of Tsallis and Boltzmann-Gibbs entropies.
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Time evolution of interacting vortices under overdamped motion

Mauricio S. Ribeiro,""" Fernando D. Nobre,"! and Evaldo M. F. Curado'**
'Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems,
Rua Xavier Sigaud 150, Rio de Janeiro, RJ 22290-180, Brazil
*Laboratoire APC, Université Paris Diderot, 10 rue A. Domon et L. Duguet, 75205 Paris, France
(Received 15 December 2011; published 27 February 2012)

A system of interacting vortices under overdamped motion, which has been commonly used in the literature to
model flux-front penetration in disordered type-1I superconductors, was recently related to a nonlinear Fokker-
Planck equation, characteristic of nonextensive statistical mechanics, through an analysis of its stationary state.
Herein, this connection is extended by means of a thorough analysis of the time evolution of this system. Numerical
data from molecular-dynamics simulations are presented for both position and velocity probability distributions
P(x,r) and P(uv,,t), respectively; both distributions are well fitted by similar g-Gaussian distributions, with the
same index g = 0, for all times considered. Particularly, the evolution of the system occurs in such a way that
P(x,r) presents a time behavior for its width, normalization, and second moment, in full agreement with the
analytic solution of the nonlinear Fokker-Planck equation. The present results provide further evidence that this
system is deeply associated with nonextensive statistical mechanics.
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